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The study of the configurational statistical mechanics of polymers in elonga- 
tional flows requires the evaluation of quadratic path integrals. Here we present 
a new technique for the evaluation of such path integrals; the method relies on 
Ito excursion theory and the Ray-Knight theorem from probability theory. 
In addition to providing a powerful computational method in standard cases, 
the method generalizes to deal with quadratic path integrals for branching 
processes. 

KEY WORDS: Brownian motion; excursion theory; path integration; 
polymers. 

1. INTRODUCTION 

Recently a new method for the computation of the laws of quadratic func- 
tionals of Brownian motion has been developed/2) The motivation for this 
work came from the need to evaluate a class of path integrals for particles 
in quadratic potentials which are the partition functions for a polymer 
model in an elongational flow. The new method is based on the machinery 
of modern probability theory, especially Ito excursion theory. In this paper 
we extend the computational scope of the method to the evaluation of 
quadratic functionals for paths with fixed endpoints, that is, for Brownian 
bridges. We also see how one can compute statistical information about the 
shape of the polymer by dealing with source terms in the partition function. 
New insight, arising from geometrical considerations, is given to the 
calculation of the partition functions for star-shaped polymers. 

The paper is largely self-contained; alternative proofs leading to the 
method in ref. 2 are given. The proofs rely on excursion theory and sample 
path considerations. Throughout we concentrate on the computational 
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power of the method rather than dwelling on technical details. A number 
of new examples are included. We begin with a review of the polymer 
model that motivates the study. Many methods exist for the evaluation 
of quadratic path integrals and some of these are briefly reviewed in 
Section 3. The basics of Ito excursion theory are then expounded in an 
informal, calculationally orientated fashion. The basis for the computa- 
tional method is then developed in Section 5, followed by some examples. 
In Section 6 the theory is used to deal with ring polymers and propagators; 
a nontrivial example calculation is included. The paper concludes by 
examining deterministically branching polymers (special emphasis being 
given to star-type polymers) and also by demonstrating how source terms 
may be included in order to analyze the statistics of the mean squared end- 
to-end distance for polymers in flows. 

The authors would like to stress that while this paper concentrates on 
applications in polymer physics, the basic techniques provide a new mathe- 
matical method which may be applied in any area where quadratic path 
integrals arise. For example, results for quantum harmonic oscillators may 
be obtained via analytic continuation. 

2. POLYMER PROBLEM 

We begin with a brief description of the polymer model our analysis 
is aimed at. For a comprehensive introduction see ref. 5. 

Polymers consist of chains of chemical units known as monomers. We 
shall be interested in the conformational equilibrium statistical mechanics of 
these chains, as opposed to any chemical or bulk properties. Two extreme 
models of polymers are (a) highly flexible chains, where the polymer appears 
as a random walk or, in the continuum limit, a diffusion, and (b) rigid 
rods. We shall consider the former model. In our analysis we shall neglect 
self-avoidance and take a continuum model where the polymer paths 
before Boltzmann reweighting (that is, in the absence of any potentials 
external or internal to the chain) are Brownian paths. Consequently we can 
apply the machinery of stochastic calculus in our study/9~ 

To obtain information about the equilibrium configurational statistics 
of a polymer path, we define an energy functional on a path (X~)o~s~ , 
given by 

, (1 j/.2 ~ ds 
f '  

(1) 
Jo ~z J 

where V is an (external) potential. (Internal potentials such as repulsive 
potentials generated by charges on polymers lead to more complicated 
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energy functionals with two time actions.) On exponentiation we obtain 
(up to a normalization factor) the Gibbs measure, the kinetic term in the 
original energy functional giving the Wiener measure on Brownian paths. 
In path integral notation the normalization factor for Gibbs measure is 
formally given by 

Z=jd[X]exp \  kT J (2) 

Z is also known as the partition function. The constants k and T are the 
Boltzmann constant and temperature, respectively. In probabilistic nota- 
tion this becomes 

where the expectation is over Brownian motion and we have set kT to be 
equal to unity for notational simplicity. The ensemble average or statistical 
mechanical average of a functional F of a polymer path is given by the 
formula 

< F[ X] > = Z-  'IF [ F[ X] exp { - ~ V( X,) ds } ] (4) 

the angled brackets indicating ensemble averaging. 
The specific physical model we shall study is that for polymers in pure 

straining or elongational flows at zero Reynolds number, (2) i.e., in a limit 
where inertia forces are neglected. An elongational velocity field u(x) is 
given by u(x)= E. x, where E is a traceless (as the flow is incompressible) 
symmetric tensor, called the rate of strain tensor. The force on a single rigid 
particle in a zero-Reynolds-number flow is given by F =  R.  u, where R is 
the resistance tensor of the particle; for simplicity we shall take R to be 
isotropic, so we can take R to be a scalar, the scalar resistance of the 
particle. For the isotropic case, the work done against the elongational flow 
is conservative, with potential energy V(x) given by 

V ( x )  = - � 8 9  (5) 

If we consider a single-chain polymer as a Brownian path threaded through 
infinitesimal isot.ropic particles and neglect the effects of hydrodynamic 
interactions between the infinitesimal particles and self-avoidance, we can 
define the flow energy of the polymer by 

V[_X] = - Xr, EX,  R [ d s ]  (6) 
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The functional V is not quite appropriate for considering the statistical 
mechanics of polymer shapes in an elongational flow, since it is not 
invariant under translations of the whole polymer. To achieve translational 
invariance we must change to center of resistance coordinates, namely 
redefine the flow energy of the polymer by 

v[x ]  = - �89 (X~-~TE(X~-XqR[ds] (7) 

where 

I;R[d~] (8) 

is the center of resistance. Notice that the partition function factorizes: 

3 

Z =  1-'[ Z, (9) 
i = 1  

where 

The 2; are the eigenvalues of E and the X" are the corresponding com- 
ponents of ,t". Thus in calculations where the functional F also factorizes, 
the three-dimensional system reduces to three independent one-dimensional 
systems. In what follows we shall restrict attention to one-dimensional 
systems and drop the index i. 

The basic object we need to evaluate has the form 

(11) 

where 

l 

p = (12) 

A simple, but very useful trick for dealing with the evaluation of such 
objects is as follows. Define 

~ (~ )=~  exp - XZd12+(2p)~/2~ X~dp (13) 
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Hence if G is an N(0, 1 ) random variable, that is to say a Gaussian random 
variable with zero mean and unit variance, then 

~b = ~:(q~(G)) (14) 

where the expectation is over G; this trick is often referred to as the 
Hubbard-Stratonovich transformation. The translational invariance of the 
polymer energy functional (7) means that we can choose the starting point 
of the path to be at 0, i.e., X(0)=0.  Completing the square in (13) and then 
shifting the starting point of the path yields 

q~(~)=exp (~Z~2 ) ~Z~ [ exp {--f~ (X~--(p/2)~/2 ~)2 dFt} ] (15) 

=exp (d"-~2 ) ~JP/2~'P'r [ exp {-I~ X: dlu}] (16) 

consequently we shall be interested in the computation of laws of the type 

3. M E T H O D S  FOR Q U A D R A T I C  PATH INTEGRALS 

There exists a number of methods for evaluating laws of quadratic 
functionals of Gaussian processes. The earliest methods were based on 
eigenfunction expansions (e.g., see refs. I1, 8, and 17). In the context of 
path integration this is also the case; the propagator for the simple 
harmonic oscillator can be obtained by expansion with Fourier series/71 
More recently Yor t~8) has showed how martingale techniques and 
stochastic calculus can be elegantly used to compute the laws of certain 
quadratic functionals of Gaussian processes. 

3.1. The Diagonal izat ion M e t h o d  

The eigenfunction method is often called the diagonalization method 
and is still widely used in the literature. Here we shall explain the basic 
method based on ref. 17 and give a (new) example to illustrate its use. 

Given an iffner product ( , , , )  and a Gaussian X process on [0, 1 ], we 
wish to find ~_[exp{(z2/2)(X, X)} ] for complex z. We write 

x~.= Z y,,g,(s)~,, (18) 
n ~ l  
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where ~. are independent identically distributed N(0, I) random variables 
and (g.,  g,.)=6 .... . 

Assume the covariance C(s, s') of X is known. Thus 

E(XsX~, ) = ~. y,] g.(s) g.(s')= C(s, s') 
n>~ ] 

(19) 

Define F so that 

Ff(s) = ( C(s, .), f )  (20) 

Therefore 

with respect to 
finite, 

I'= ~ y]g,,g. (21) 
n~> 1 

with respect to the inner product (.,.). Therefore/" has eigenfunctions g, 
with corresponding eigenvalues y], given by the equation 

Fg. = ),2,, g. (22) 

(-,-). Consequently, when Re(YmaxZ ) < 1 and Z,, ~7, is 

the aforementioned conditions on z and the 7~ ensuring the existence of the 
Gaussian integrals and infinite product, respectively. For example, one can 
easily show that, where defined, 

E~ [ exp { ~  f~ X: ds)] = {cos(z)} -]/2 (24) 

where X is standard Brownian motion. The infinite product is evaluated 
using the Weierstrass product formulaJ ') 

Example .  We shall consider the case where X is Brownian motion 
on [0, 1 ], started at 0, and where 

with 

(x, x) = ]~ x~ dp (25) 

dp = (ocZlro, a] +fl2I[a" 11) ds (26) 
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In this case C(s, s') = s  A S' [ =min( s ,  s ' ) ]  and the eigenvalue equat ion (22) 
is 

/ * J  I 

r]g,,(s) = Jo (s A s') g,,(s') ds' (27) 

The boundary  conditions imposed on the g,, can be read off from (27), 
namely g , , (0 )=  0 and g' , ,(1)= 0. The solution (unnorrnalized) to (27) is 

g.(s)=Asin(~) ,  0 < s < a  (28) 

=sin(flS-o~, a < s < l  (29) 
\Y,, / 

where A and 0 are constants. To  avoid obtaining the eigenvalues explicitly, 
we may  complete the calculation using an observat ion made in ref. 3 and 

- z T , , )  has simple zeros at a little more  trickery. We note that  I-I ,>~ (1 ~ 2 
z=-I-7,]-~;  however,  so does cos(flz-O) from the condition g ' , , (1)=0.  
Consequently one can show their ratio is a bounded entire function in C 
and hence is constant  (this is essentially how one proves the Weierstrass 
product  formulas).  The continuity conditions at s = a are 

d sin(ccaz) = sin(flaz - O) (30) 

Ace cos(~az) = cos(flaz -- 0) (31) 

Using the addit ion formula for cosines, we may  write 

cos(/~z - 0) = cos{ pz(1 - a)} cos(flza - 0) - sin{/?z(1 - a)} sin(/~za - 0) 

(32) 

and then use (30) and (31) to show 

]-I (1-- z2?]) = (c~ flz(1-a)} c~176 -fl--sin{ flz(1--a)} s in(~za))  
n ~  I O~ 

(33) 

and hence 

= (c~ flz(1-a) } c~ - ~  sin{ flz(1--a) } sin(~ ) (34) 
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3.2. The Pauli -Van Vleck Formula 

The Pauli-Van Vleck formula has its origins in quantum mechanics; 
in the Euclidean setting corresponding to polymer physics the propagator 
for a quadratic action is given by 

K(y, tlx, O)= d[X]  e x p ( - S [ X ] )  (35) 

1 02Sj ]1/2 
= ~ ~ j exp( - So,) (36) 

where S[X]  is the action functional for paths and So, is the action of the 
classical path between x and y (when it is unique). A number of proofs 
exist, ~j~ but essentially it comes from expanding the action about the 
classical paths Xc+, i.e., 

1 62S[Xc,] 
S[X]=S[Xc,+~I]=S[Xct]+~tl fiX= rl+ ... (37) 

which is exact for quadratic actions. The Pauli-Van Vleck formula also 
provides the starting point for semiclassical methods such as the WKB 
approximation. 

3.3. A General Result 

We recall a result known to some as the fundamental theorem of 
statistics. 

If X is a zero-mean, Gaussian, ~U-valued random variable covariance 
matrix C, a ~ R d, and M is a positive-definite symmetric matrix, then 

~[ exp{ - } ~ x +  a) T M ( X +  a)} ] 

=det(I+ MC)-'/2exp{--�89 MC) -1 Ca} (38) 

The results for continuous Gaussian processes on intervals of the real line 
follow via soft weak convergence arguments. (2) The statement of the result 
(familiar to field theorists) in this case is 

lf, , 
= de t ( I+  MC)-1/2 exp - 2  Jo Jo ds ds' a(s) 

x [ ( I +  MC) -t M](s, s')a(s') l (39) 
) 



Excursions for Polymers in Elongational Flows 273 

Here 

Mf(s)=~s f(s) and Cf(s)= I~ ds' C(s,s') f(s') (40) 

where C(s, s') = E(XsXs,), and I is the identity operator. In ref. 2 the above 
formulation of the problem is used to develop an analytical approach to 
the problem in terms of resolvent operators; via this the ultimate link with 
exclusion theory is made to simplify calculations when the operators 
involved become too unwieldy. However, it is only the structure of (39) 
that we shall use when we consider ring polymers and propagators. 

4. ITO EXCURSION THEORY 

The following section is a brief introduction to Ito excursion theory 
for Brownian motion; it is based on the introduction in ref. 4, where excur- 
sion theory is used to analyze diffusion on a generalized comb. Excursion 
ideas apply to any Markov process with a recurrent state. ~5~ 

Consider a standard Brownian motion (B,),/> 0 on I~ starting at 0; then 
by the continuity of B we can write { t: B, ~ 0} as the disjoint countable 
union of maximal open intervals, i.e., Ui (ai, b~). During each of these inter- 
vals B makes an excursion away from 0. An excursion can be considered as 
a point in the excursion space U, where 

U -  { f  I f i s  a continuous function from R + to R 

a n d f - ~ ( R \ { 0 } )  is an open interval} (41) 

The length of the interval f - ' ( R \ { 0 } )  is the duration of the excursion. So 
an excursion for Brownian motion has the form 

{ Bminlt +.,. b,): t~>0} (42) 

On the intuitive level we may say that each time Brownian motion hits 
the origin it makes a loop away from the origin (an excursion). When the 
Brownian motion returns to the origin, the next excursion away is inde- 
pendent of all the previous excursions. This is because Brownian motion is 
a Markov process, so, conditional on knowing that we are at the origin, 
what happens next is independent of what has happened in the past. Given 
a number of visits" to the origin, one can construct the Brownian path by 
joining together the loops in the order in which they occur. However, we 
may not talk of the number of visits of Brownian motion to the origin, as 
before making any significant (e.g., high-level) excursion away from the 
origin the Brownian motion will have flicked through the origin an infinite 
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t g" 

Fig. I. Realization of a Brownian path, shown with part of the path magnified. 

number of times (see Fig. 1). This is due to the nowhere differentiability of 
the Brownian path. However, a natural generalization for the number of 
visits to the origin does exist--it  is called local time and we may use it to 
parameterize the order of excursions. 

T h e o r e m  1 (Trot ter) .  There exists a jointly continuous process 
{L(t, x): t/> 0, x ~ R} such that for all bounded, measurable f and all t >/0 

S f (Bs)  ds = f ( x )  L(t, x) dx 

The function L(t,.) is the occupation time density, called local time. 
A heuristic definition of L, useful for calculations, is 

f2 L(t ,x )= ~(Bs-x )  ds (43) 

where ~ is the one-dimensional Dirac delta function with unit mass at 0. 
In the context of polymer physics we see that local time is simply the 
monomer density. Hence if b < a ' ,  then the excursions occurring in the 
intervals (a, b) and (a', b') occur at local times at O, l, and l ' ,  respectively, 
where l < 1'. Using this, we can split a Brownian sample path apart into its 
excursions from 0 and represent a Brownian path as a point-process ~ in 
R + x U, where (/, 4)~ 3 if and only if the Brownian motion makes excur- 
sion ( at local t ime/.  This procedure can be reversed, as, if we know ~, we 
can join the excursions in the correct order to recover the original sample 
path. The fundamental result of excursion theory is the following. 
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Theorem 2 (Ito). The excursion point-process is Poisson with 
expectation measure Lebesgue x n, where the a-finite measure n on U is 
called the excursion measure. 

Thus we deduce: 

(i) I f A c U ,  0 ~ < n ( A ) < o o ,  then 

P(Z has no point in (0, l ) x  A ) =  e -~'cA~ (44) 

(ii) I f  A1 ..... Ak c U are disjoint, 0 <<.n(A~) < oo for all i, A = U*~ A,., 
and n(A) > 0 ,  then 

P( ~, ~ A,) = n(A,)/n(A) (45) 

where l -  inf{ u: Z ,  ~ A }. 
We are now faced with the problem of calculating the excursion 

measure n of  some set A. I to 's  theorem means, however, that  the local time 
at which a first excursion in A occurs is exponentially distributed with rate 
n(A). Hence for a Brownian motion started at 0, we have 

n(A) = ([F~ (46) 

where LA is the local time at 0 at which the first excursion in A occurs. 
This can be found by calculating the expected local time spent at 0 by a 
Brownian motion which is killed when it has an excursion in A. There are 
many elegant methods for calculating excursion rates, but the method we 
shall use involves only standard mathematical methods. 

Examples 

Rates of Hitting Levels. Let A be the set of  excursions hitting the 
point - a  or a. To find n(A) we calculate the expected local time at 0 of  
a Brownian motion killed at ___a; this expected local time is therefore 
n(A) 1. 

For  a Brownian motion started at x ~ [ - a , a ]  and killed at __+a, 
define ~b(x) to be the expected local time at 0 before the process is killed. 
It is easy to show, using the definition (43), that  ~b satisfies 

1 d 2 ~  . 
2 ~ + 6(X) = 0 (47) 

with the (killing) boundary  conditions ~ b ( - a ) = ~ b ( a ) = 0 .  Solving (47) 
yields ~b(0)=a, giving n(A)=a -1. Excursions hitting - a  and a, by sym- 
metry, occur at the same rate and are also disjoint, hence 

n(hit - a )  = n(hit a) = 1/2a (48) 
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Marked Excursions. In the following examples we mark 3 the sample 
paths at an exponentially distributed real time of  rate �89 independent of  
the path. 

(i) Let A be the set of  excursions which are marked or hit _ a .  
Therefore n(A) -] is equal to the expected local time spent at 0 by a 

1 "~ Brownian motion which is killed at _+a and at real time rate ~ct-. In this 
case the equation for the expected local time at 0 for a Brownian motion 
started at x e  [ - a ,  a ]  and killed at rate ~ct 2 is 

1 dE~b 1 
~2~b + ~(x) = 0 (49) 

2 dx  2 2 

with the (killing) boundary  conditions q ~ ( - a ) = ~ b ( a ) = 0 .  Solving (49) 
yields ~b(0)=ct - t  tanh(aa). Hence n(A)=o~coth(aa) and using the sym- 
metry between upward and downward excursions, we obtain 

n(hit - a  or m a r k e d ) =  n(hit a or  m a r k e d ) =  �89 coth(cta) (50) 

In the limit a---, ~ ,  (50) becomes 

n(marked in [ - ~ ,  0 ] )  = n ( m a r k e d  in [0, ~ ] ) = � 8 9  (51) 

which can also be obtained by direct calculation. 

(ii) If  A is the set of  excursions which hit a before they are marked, 
then we can use the Poisson nature of the excursions to find 

P~ a before marked) 
n(A) 

(52) 
n(B) + n(C) 

where B is the set of  upward excursions hitting a or marked and C is the 
set of  marked downward  excursions. Since 

P~ a before m a r k e d ) =  e - ~  

from (50) and (51) we find 

e - , ~ =  

giving 

n(A) 
�89 coth(~a) + �89 

n(A) = �89 cosech(0~a) 

(53) 

(54) 

(55) 

3These marked excurslons, strictly, belong to a richer excursion space; ~ however, for our 
purposes we need not worry about the precise details here. 
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(iii) If  the process is a Brownian motion reflected at +__a, then the 
local-time rate of marked excursions is given by a measure m on excursions 
of reflected Brownian motion. If ~b(x) is the expected local time at 0 for this 
process started at x E [ - a ,  a] ,  then q~(x) satisfies (49) subject to the (reflect- 
ing) boundary conditions ~b'(-a)= ~b'(a)= 0. This gives ~b(0)= ~-~ coth(0~a). 
Hence, using the symmetry between upward and downward excursions, we 
find 

m(marked in [ - a ,  0])  =re(marked in [0, a ] )  = �89 tanh(0ta) (56) 

We can derive (56) by an excursion argument (the basic form of which is 
used frequently in excursion problems). For Brownian motion in ( - ~ ,  a]  
with reflection at a and real time rate of marking as before, we proceed by 
noting that marked excursions from 0 into [0, a]  are either marked before 
hitting a or are marked coming back to 0 from a. Consequently, 

m(marked in [0, a ] )  = re(marked in [0, a]  or hit a) 

- n(hit a with no m a r k ) . p  (57) 

where p is the probability of returning to the origin from a without a mark. 
In other words, we have used the fact that marked excursions from 0 are 
those which hit a or are marked, less those excursions which hit a without 
a mark and then return to 0 without a mark. We can carry out excursion 
theory from reflecting starting points, by ignoring any excursions above the 
level a. (We may neglect any renormalizations of rates from the reflecting 
point, as we shall only be interested in ratios of rates to give probabilities.) 
We find using the rates we already have 

n~ 0 without a mark) �89 cosech(0~a) 
(58) 

P = n o ( h i t O o r m a r k e d i n [ O , a ] )  �89 coth(aa) 

Hence we recover (56). 

5. THE R A Y - K N I G H T  THEOREM AND QUADRATIC  
FUNCTIONALS OF BROWNIAN M O T I O N  

Our methods for evaluating the laws of quadratic functionals for 
Brownian mol~ion are based on the celebrated Ray-Knight  theorem, (part 
of) which states the following 

T h e o r e m  3 [ R a y - K n i g h t ) .  Let W. be a Brownian motion with 
values in (0, t],  started at t and reflected at t, let L(u, s), s <~ t, be the local 
time for W at s, and let Ho=inf{u:  W,,=0}. For independent Brownian 
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motions Bt(s), B2(s) starting from 0, let Z~ = Bl(s)Z+ B2(s) 2 be a squared 
two-dimensional Bessel [BESQ(2)] process. Then the two processes 
{L(Ho, s): 0 <~s ~< t} and {Z,: 0 ~< s ~< t} are identical in law, i.e., 

(Z~;O<~s<<.t)"aw'(I:~ 6(s-W,)du;O<<.s<~t) (59) 

Proofs of the Ray-Knight theorem are normally given for t = 1; the 
more general result follows from a scaling argument. A proof using 
excursion theory is sketched in ref. 14 and the full details are given in 
ref. 15. An alternative proof may be found in ref. 16. 

Corollary 4. Let B be a standard Brownian motion and let W be 
a Brownian motion in ( - o ~ ,  t] started at t, reflected at t, and marked at 
the (position-dependent) exponential real time rate v( HI,,)/{ w.>ol. Then 

~(x) - ~-X [ exp {-I~ B2v(s) ds } ] 

=pl/2e-d; (60) 

where p = P'( W hits 0 before being marked) and d is the local time rate of 
marked excursions of W from 0, i.e., 

d = n~ (61) 

with n o the excursion measure on Brownian motion which is reflected at 
the level t and marked at (position-dependent) exponential real time rate 
v in [0, t]. 

The proof of this can be found in ref. 2, but in the spirit of our exposi- 
tion we shall give an alternative (sketch) sample path proof. 

If N is an N(0, T) normal random variable for some T>~ 0, Proof. 
then 

~(~k(N)) = E~ [ exp {--I~ (Bs+N)2v(s)ds}] (62) 

where the first expectation is over N and the second is over N and B. If 
( B s ) - r ~ ,  is a standard Brownian motion started from 0 at time - T ~  0, 
then 
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If we square (63), we obtain 

_rZ.,v(s)Ils>o} (64) 

where (Zs)_r<~s<~, is a BESQ(2) process started at 0 at time - T .  Conse- 
quently we may apply Corollary 4 (taking advantage of time translation 
invariance) to obtain 

[iF(qJ(N))]2=iF'I exp {-f~-rv(W,,)l,,;,>o, du}] (65) 

where W is a Brownian motion in ( -  ~ ,  t]  started at t and reflected at t 
and H _  r = inf{ u: W, = - T}, i.e., the first hitting time at - T. Therefore 

[ IF(qs(N))] 2 = F'(  W hits - T before being marked) (66) 

By the Markov  property of  W 

W( W hits - T before being marked) 

= P'(  Whi ts  0 before being marked)  

x I1~~ Whits  - T before being marked) (67) 

An excursion argument gives 

n~ - T) 
p0( W hits - T before being marked) - n0(hit _ T) + n~ (68) 

(Note the set of  marked excursions and the set of  excursions hitting - T  
are disjoint because there is no marking in [ -  T, 0].) Using the notation 
of the statement of  the corollary and the result n ~  T ) =  1/2T from 
Section 4, we find 

and hence 

po( W hits - T before being marked)  
1/(2T) 

(69) 
1/(2T) + d 

p 1/2 

[F(@(N)) - ( I + 2dT) t/z (70) 

Because ~b(x)= ~ ( - x ) ,  we may write (70) as 

( 2-~-~ 1/2 ~ dze - ~k(z)=(1 + 2dT),/2 z~TJ fl -.'-/2r pl/Z_ (71) 

822/79,/I-2-19 
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The integral transform above is invertible (a change of variables makes it 
a Laplace transform) and consequently we obtain the required result. 

We may now obtain the law ~b as 

= \ p d J  (73 ) 

Examples 
Single-Strand Polymer with Uniform Resistance. This is the sim- 

plest case; we shall take a path of length t with measure d#(s)= (0c2/2)ds. 
In this ease the real time rate of marking is simply constant and p = 2/(~2t). 
It is then well known (or a trivial exercise to show) p = 1/cosh(0~t) and 
from (56) we know d = (ct/2) tanh(~t). Therefore 

( at .],/2 

~b = \sinh(~t)J (74) 

Note that in this calculation we have implicitly assumed that the eigenvalue 
associated with the particular component of the flow was negative. For 
positive eigenvalues we may obtain the corresponding result by analytic 
continuation. In this particular case the continuation is 0c ~ i~ and we 
obtain 

( 0ct `],/2 
~b = \sin(ctt)} (75) 

Positive eigenvalues of the flow correspond to directions in which the flow 
tends to stretch the polymer and negative eigenvalues ones where the flow 
tends to compress the polymer. The factors of the partition function corre- 
sponding to positive eigenvalues become singular for flow strengths suf- 
ficiently high. Physically this divergence signals the coil-stretch transition, 
where the polymers cease to be well modeled by Brownian motion and are 
instead highly aligned in the stretching directions of the flow. Note that in 
the simple case above the transition occurs at ctt--~, i.e., increasing either 
the length of the polymer or the flow strength takes it closer to the 
coil-stretch transition--this is physically intuitive. 

Single-Strand Polymer with Piecewise Constant Resistance. Here 
we take the length of the path to be 1 and the resistance measure to be 
proportional to the one in (26), i.e., 

0C2 f12 dl.l = (-~ I[o,a] +-~ I[a, l]) ds (76) 
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Physically we could think of this as a polymer strand formed by joining 
two homogeneous polymers of different resistances. This calculation can be 
done with minimal computation using excursion theory. 

By the Markov property 

p = Pl(hits a without a mark).  P~(hits 0 without a mark) (77) 

We know 

and 

P~(hits a without a mark)=  l/cosh[fl(1 - a ) ]  

Pa(hits 0 without a mark) 

n'(hit 0 without a mark) 
- na(hit 0 or 0c marked) + n~(fl marked) 

Using the rates in (4), we obtain 

P~(hits 0 without a mark) 

(0q2) cosech(~ta) 
(cc/2) co th (~)  + (/3/2) tanh(/~(1 - a ) )  

cosh(/3( 1 - a)) 

(78) 

(79) 

(80) 
- cosh(a.a) cosh(fl( 1 - a)) + (fl/a) sinh(fl( 1 - a)) sinh(0ca) 

Hence 

p=(cosh(~a)  cosh{ f l (1-a)}  +fl-sinh{fl(1-a)}~ sinh(0ca)) -I (81) 

Marked excursions of W from 0 are either marked before they hit a or they 
hit a without a mark but are then marked before returning to 0; therefore 

d =  n~ marked or hit a) 

- n~ a without a mark). Pa(hits 0 without a mark) (82) 

Substituting in the relevant excursion rates yields 

0c (cc/2) cosech(cca) cosh(fl( 1 - a ) )  
d = ~ coth(cta) cosh(aa) cosh(fl( 1 - a)) + (fl/oc) sinh(fl( 1 - a)) sinh(0ca) 

1 ct cosh(fl(1 - a ) )  sinh(0ca) +f l  cosh(0ca) sinh(fl(1 - a ) )  
(83) 

- 2 cosh(0ca) cosh(fl(1 - a ) )  + (filet) sinh(fl(1 - a ) )  sinh(0ta) 
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Therefore 

~2 a +/~2( 1 -- a) ] i/2 

~b = ct cosh(fl( 1 - a)) sinh(cta) + fl cosh(cu/) sinh(fl( 1 - a)) 
(84) 

The previous two results are in agreement with those already obtained 
in ref. 2 via calculations with the resolvent operator for Brownian motion 
rather than by the excursion method used here. 

6. RING POLYMERS AND PROPAGATORS 

In order to deal with ring polymers we need to be able to condition 
the endpoints of our Brownian paths to tie up, that is, we need to be able 
to compute the laws of quadratic functional of Brownian bridges. We shall 
show here how to accomplish this; in addition we shall show how our 
methods can be used to obtain the propagators for generalized simple 
harmonic oscillators. 

Lemma 5. Let (Bs)o<s~<, be a Brownian motion conditioned so 
that Bo = x and B, = O; then 

2tJ J (85) 

where 

= n'(hit 0 or/~ marked) 

b = n'(hit 0 without being p marked) 

(86) 

(87) 

and n is the excursion measure on Brownian motion marked at real time 
rate v in [0, t]. 

Proof. First we use 

[ }1 E x ' ~  exp - B2v(s)ds = l i r n  EX[exp{-2B,~}] (88) 

This is dearly true on physical grounds and is a standard form of argu- 
mentation in polymer physics (the statement can also be mathematically 
justified in terms of Doob h-transforms). For 2 e (0, oo) we may write 



Excursions for Polymers in Elongational Flows 283 

where v*(s)= v(s)+ 26(s-  t). We now apply Corollary 4; the process W, 
having state space [0, t], is marked at real time rate v*, which is real time 
marking of rate v with local time marking of rate 2 at t. [ Elaborating, 

~ du = J'o m {v(W,,) + 26(t - W,)} du (90) 

= I~ ~ v(Wu) du + 2L(Ho, t) (91) 

where L is the local time process for W.] Therefore, in the notation of 
Corollary 4, 

n'(hit 0 without a mark) 

P = n'(hit 0 or v marked) + 2 
(92) 

b 
= a + 2  (93) 

and 

bb 
d = d - - -  (94) 

a + 2  

where 

a = n'(hit 0 or p marked) (95) 

= n~ t without being p marked) (96) 

where all the excursion measures n are for the process W. Finally it is easy 
to see 

EX[exp(--2B,2)] = ~ - ~ )  exp 1 +2t2J (97) 

and hence the result. 
A Brownian motion started at some point x and conditioned to be at 

point y at time t is called a Brownian bridge on [0, t] between x and y. 
It has the representation f l , + x + ( y - x ) s / t ,  where (fl)0~_~, is the 
standard Brownian bridge on [0, t],  i.e., starting and ending at 0 (for 
example, see ref. 13); it is clear that its time reversal is the Brownian bridge 
on [0, t] between y and x. Therefore a consequence of Lemma 5 is 

~ _ ~  2} (98) 
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If we set x = O, then we find 

~-~176 [ exp ( -  f~ B2 d~) ] = (2bt) 1/2 

= (2bt)1/2 (99) 

and hence b=b .  Using (99) and the excursion rate (55), we recover the 
well known result (17'2) (where once again it was obtained by calculations 
using resolvent operators) 

~:o - o exp - 2 \sinh(~t) } (100) 

One can see that the expressions for (100) and (74) are the same; this is 
explained elegantly in ref. 6. 

We are now in the position to give the general form of the law of the 
quadratic functional for a path with both endpoints fixed at arbitrary 
points. 

Lemma 6. We have 

t 1 ( x -  y)2} ~-x" Y [ exp ( - Io B: d~ ) ] = ( 2bt ) '/2 exp { -glx2 + 2bxy - ay2 + ~ 

(101) 

Proof. The basis of the proof is to note that 

where fl is the standard Brownian bridge on [0, t] and 
a(s) =x+ (y-x)s / t .  Hence the result (39) implies that 

~x-Y [exp ( - - I :  B2 dct)] =Cexp(R[x,y])  (103) 

where C is independent of x and y, and R is quadratic in x and y. We may 
read off the value of C and the diagonal terms of R from (85) and (98), 
giving 

[EX - Y [ exp ( - Is B~ dl2 ) ] = ( 2bt ) l/2 exp { - ~x2 + 2rxy - ay2 + l ( x - y ) 2 } 

(104) 
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leaving only the value of r to be determined. Using Eq. (104) and 
Corollary 4, we may write 

IEx [ exp ( - I o  B,Z d/~)] 

=E I (2bt)'/2exp {-~tx2 + 2rx(x + N)-a(x  + N)2 + l (N)2 t l  (105) 

(106) 

where the expectation on the right-hand side of (105) is over N, a normal 
N(0, t) random variable (i.e., we are simply averaging over all possible 
endpoints of the path starting at x). Taking the expectation over N and 
equating the two right-hand sides above, we obtain the required result. 

The propagator for the polymer path is given by 

K(y, t[x, O)=F_~ I 6(y-B,)  exp ( - I~  B2 dll)] (107) 

=lFx-ylexp(--f~B: dlz)l .Exit(y--B,)] (108) 

= ( b "~ 1/2 
\~--~j exp( - Ftx 2 + 2bxy - ay 2) ( 109 ) 

If we set d/~ = �89 ds, then substituting the relevant excursion rates into 
(109), we obtain the (analytic continuation) of the well-known propagator 
for the simple harmonic oscillator, (7) i.e., 

2re sinh(~t) exp - ~  ~ coth(et) 

x (x 2 + y2 _ 2xy sech(et))} ( 1 10) 

This is directly a consequence of the fact that the analytic continuation of 
the polymer measure to imaginary time gives the path integral measure for 
quantum mechanics (in suitably chosen units). Less directly, one can use 
the Feynman-Kac formula to show that K(y, t I x, 0) satisfies a diffusion 
equation(12); this diffusion equation is the analytic continuation of the 
Schr6dinger equation for the simple harmonic oscillator into imaginary 
time. 
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When the polymer in which we are interested is a ring polymer, then 
we find 

~(x)=IFx~Xl exp (--f~ B2 dlt)l (111) 

= (2bt)v2 exp{ -x2( t i  + a - 2b)} (112) 

and consequently 

2bt ~ ~/2 
0 = (p(a + it - 2b)J (113) 

E x a m p l e s  

Ring Polymer of Uniform Resistance. In this case we take d/2 l "~ = ~_c~- ds 
and take the bridge to be run for time t. Substituting the relevant excursion 
rates into (113), we obtain 

0~t 
~b= (114) 

2 sinh(at/2) 

Once again this is in agreement with the resolvent-based calculation to be 
found in ref. 2. If we examine the analytic continuation to a direction where 
the flow is stretching, we find that the coil-stretch transition lies at at = 2re 
The fact that the endpoints are joined makes the polymer less susceptible 
to stretching. In fact, comparing the partition functions (114) and (74) 
reveals that the partition function for the ring polymer of time length t is 
equal to the product of the partition functions of two identical single- 
strand, free-end polymers of half the time length (i.e., t/2) and the same 
resistance. Unfortunately, this result is not the sign of anything deeper to 
be uncovered, as we shall see in the next example. 

Ring Polymer of Piecewise Constant Resistance. Here we shall 
take the polymer path to be a ring with resistance measure given by (76). 
We can think of this as a ring polymer made up of two single-strand 
polymers joined at their free ends. In order to simplify the forthcoming 
excursion arguments, we make the following observation. Because it is a 
measure on a ring polymer, the resistance measure dlz can be thought of as 
a measure on [0, t] with the points 0 and t topologically identified, i.e., a 
circle of circumference t, S~. We can now consider excursions Brownian 
motion W on the space S~ with marking generated by the measure d/l; 
however, we note that excursions from 0 or t end both when they return 
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to 0 and when they hit t. Let rn denote the excursion measure on excur- 
sions of  W. Marked  excursions can be either clockwise or  anticlockwise 
(the two sets being disjoint) and hence 

m~ = m~ marked)  + m~ marked)  (115) 

If we take s to be increasing in the anticlockwise direction, then 

m~ marked)  = 6 - b (116) 

and 

Therefore 

m~ marked)  = a - b 

m~ = 6 +  a - 2 b  

(117) 

(118) 

giving us an alternative interpretat ion for the excursion rate in the 
exponential  in Eq. (112). 

In our example 

m~ = m~ or hit a) 

- m ~  a with no m a r k ) .  P~(hit 0 without a mark)  

Using the rates from Section 4, we find 

m~ or hit a) = ~ coth(aa)  + coth{ fl(1 - a)} 

and 

m~ a without a m a r k ) =  2 cosech(cta) + R2 cosech {fl(1 - a)} 

A straightforward excursion argument  gives 

~cosech(aa )  +flcosech(fl(1-a)) 
coth(0ca) +flcoth(fl(1-a)) 

fl cosech(fl( 1 -- a))  

119) 

120) 

121) 

122) Pa(hit 0 without  a m a r k ) =  

We also have 

0c 
b = ~ cosech(aa) �9 123) 

coth(~ca) + fl coth(fl( 1 - a)) 
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Putting these rates into (113) yields 

0~2a + f12(1 -- a) -) 1/2 

~b = (~/fl + fl/~) sinh(0ta) sinh(fl( 1 - a)) + 2 cosh(~a) cosh(fl( 1 - a)) - 2,/ 

(124) 

So, unfortunately, there is no nice link between this partition function and 
the partition functions for the two polymers it is built up from. 

7. P A R T I T I O N  F U N C T I O N S  FOR D E T E R M I N I S T I C A L L Y  
B R A N C H I N G  P O L Y M E R S  

The partition functions for deterministically branching polymers in 
elongational flows can be calculated by an extension of the techniques 
presented so far. The branching polymer is modeled by a Brownian motion 
whose time is indexed by a tree Y.  Each interinternal node of the 
tree corresponds to a point where the Brownian motion has branched; 
segments of trees are the edges between nodes and correspond to the time 
intervals over which the corresponding path of the Brownian motion is 
run for (see Fig. 2). On each segment of the graph we once again have a 
measure /1, interpreted as the resistance of the corresponding segment of 
the polymer in the flow. The partition function of the branching polymer 
structure is 

fb=E[exp{-(f~.B:d/.z-p(f B, d/,t)2)}] (125) 

where we take p = / l ( # - )  - l ,  making the expression (125) translation 
invariant. 

Fig. 2. Time free for a polymer with root k. 
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First we may make a particular choice of node of ~" as the root of the 
tree, say k corresponding to the starting point of the branching polymer. 
Now we consider a process W on #- which is standard Brownian motion 
away from the nodes, is reflected at the free ends, and at each internal node 
its excursions are equally likely to go down any of the incident edges (in 
fact the construction of W is exactly the same as that for diffusion on a 
generalized comb in ref. 4). For each choice of node k as the root and each 
segment a = (i, j )  connecting nodes i and j, where i is closer to the chosen 
root than j (so we can draw an arrow in the direction of k, see Fig. 2), 
define 

P~,, k -- P J( W reaches i without being p-marked) (126) 

and 

where node k is chosen as the time origin of B and B k = X. 

Theorem 7. Let B be a deterministically branching Brownian 
motion indexed by tree #- and choose node k of 9- as the root. Then if 
B k = x ,  

g , k ( x ,=(~  Po, k)l/2e -uk'r (128) 

where dk is the local time rate of p-marked excursions by W from node k. 

The proof is by induction on the number n of nodes and can be found 
in ref. 2. Using (128), we then obtain the partition function as 

/ l - I  \ U2 

~ = \ ~ 1 [ '  ' ~ ' " }  (129) 

where I - [ ~ - , = I - L ~ - P  .... . One can readily check ~2) that the above 
expression is independent of the choice of root, as we should expect from 
translational invariance. As a first simple, but illustrative, example we 
shall return to the single-strand polymer made by joining two polymers of 
uniform but differing resistances. The natural choice (with the benefit of 
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hindsight) for the root  k is now at the joining point s = a  on [0, 1]. It is 
now trivial that 

B 
dk = } tanh(~a) + 2 tanh(fl( 1 - a)) (130) 

1 
~ P o "  cosh(0ca) cosh(fl( 1 - a)) 

( 131 ) k 

and 
ctZa + ]~2( 1 -- a) 

P- -  2 (132) 

thus recovering the parti t ion function (84). 

General Star Polymer. We may construct a star polymer by taking 
n single-strand polymers, modeled by a Brownian path on [0, ra] with 
associated resistance measure / t ; ,  and joining them at the origin of their 
respective time segments (see Fig. 3). We choose the root  k of the time 
graph to be the common origin. Using an obvious extension of the nota- 
tions established in the previous section, we obtain the parti t ion function 
for the star polymer as 

~b= " d (133) 
\ P  Z i = l  i/  

where p = (Z'i'= 1 ~J d/~,.)-l. In particular, if each of the component  rays 
consists of a single monomer  type, and hence has a constant resistance 
measure d/t i = ~_~il 2 ds, we obtain 

( i- lr=lsech(ctiri  ) ,],/2 
~b = \ P  ZT=, l~ tanh(0~ri)/  (134) 

this being the general form of a result derived in ref. 2. 

Fig. 3. A star polymer, pictured alongside its time graph. 
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Fig. 4. A "spider" polymer with its time graph. 

8. M O R E  E X A M P L E S  

"Spider" Polymer. So far we have only considered branching 
polymer structures modeled on trees. By making use of our previous results 
for Brownian bridges, it is possible to handle polymers with rings. Consider 
a graph which consists of  a loop (which we think of  as the path of a 
Brownian bridge of  length r from x to x) with n trees ~--.,, m = I ..... n, 
attached by node k., to the loop at time T., (see Fig. 4). In this case 

0 ( x ) = E  x'x exp - X~d/z- d.,X2r., Ha-.,,k., (135) 
m = l  1 

= E  x'x exp - X~d/z* H~-o,,k m (136) 
n - - 1  

where X is now a Brownian bridge of  length r from x to x and d/z*= 
d/z + Z~, = 1 d,,fir., ds. The first factor on the right-hand side above can now 
be calculated using (112), giving the corresponding partition function ~b 
to be 

4= p(a*+~*-2b*)) ,,,I~=llT~-"k" (137) 

the asterisk indicating that excursion rates are to be calculated for excur- 
sions with marking generated by the measure d/z*. 

9. I N C L U D I N G  S O U R C E  T E R M S  

In order to gain statistical information about  the geometry of  a 
polymer path it is necessary to include source terms in the partition 
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function. We may analyze the statistics of the end-to-end distance for a 
single-strand polymer by considering the generating function 

Given this, we may calculate 

~(2) 
( e x p ( - 2 X , ) )  - (139) 

4(0) 

Here X is the actual physical polymer path obtained by using the correct 
Boltzmann weight given by (3), i.e., the measure on the process changed by 
the potential due to the flow. To compute ~b(2) we proceed as before: 
uncompleting the square by introducing the N(0, 1 ) random variable G and 
shifting the origin, we obtain 

-(21),]2f d~-r ] 
(]40) 

We deal with the endpoint by writing (140) as 

4( ) = (2~t, a ~2 d~ dy 

x ~_r Y+r l exp { - (  f~ B2 dl~ + 2y) } ] (141) 

i.e., we first condition on the endpoint and then average it out. We may 
now use (101), giving 

(2b) 1/2 f 
~b(2)= 2zc Jn2dzexp(-~ zrAz-c'z) (142) 
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where 

and 

(p(a + a-- 2b) ( a -  b)(2p)l/2"~ 
A = \(a_b)(2p)il  2 2a J 

c=(0) 
Consequently, 

r 

= \ p d J  exp \ aa_b  2 j j  

and where we have used the relations 

293 

(143) 

(144) 

b 2 
d = ~ - - -  

a 

and 

b 
p = -  

a 

Therefore, using (139), we obtain 

['V(a+a-2b~l < e x p ( - 2 X , ) > = e x p  ~ - \  aa_b  2 j j  
1 ( a + a - - 2 b )  <X2>=~\ aa_b  2 J 

(145) 

(146) 

(147) 

(148) 

The reader may like to check that in the zero-resistance limit (150) gives 
the result for standard Brownian motion. In addition we note that X, is a 
Gaussian random variable. [We should anticipate this, as the energy func- 
tional on the paths is still quadratic in X and hence the process (X)o~<s~<, 
is Gaussian. ] 

(150) 

(149) 
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In cases where the polymer resistance measure is invariant under time 
reversal, then w e  have ~ = a  and Eq. (150) simplifies to 

1 
(X~) =a+b (151) 

In the case of a uniform resistance we find 

2 /at\ 
(X~)  = ~  tanh ~ - )  (152) 

As expected, the mean-squared end-to-end distance decreases as the com- 
pressing flow strength increases. If the component of the flow is instead 
stretching, then the substitution ~ --* i0t gives 

= - t a n  (153) 
0~ 

The stretching component of the flow increases the mean-squared end-to- 
end distance up to the coil-stretch transition, where it becomes infinite. 

10. A REMARK ON STAR-TYPE POLYMERS 

When we considered the partition function for star polymers in 
Section 7, the reader may have noticed that when the rays of the polymer 
are identical, the partition function takes on a much simpler form. Here we 
explain that simplification, in a slightly more general setting, as a conse- 
quence of the geometry of the original problem. Consider take n identical 
polymer types with the same time graph #- (note that we need not restrict 
ourselves to trees here) and with the same resistance measure/1 on each 
polymer. Now we choose a point x on the graph ~" and form a new 
star-shaped polymer by joining the individual polymers at the point x. The 
partition function for this new polymer is given by 

~=E[exp {--(I~. ~ B~dI~-P(~_ ~, Bidlzl21t] (154) 
i = l  i ~ l  

where p=/z(9- ')  -~. The process B=(B~,B2,...,B,) can be viewed as a 
process in R"; so, defining the unit vcctor in R" 

1 
r=----F(1, 1 ..... 1) (155) 

,/n 
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we find 

~=E[exp{ - ( I~_B2d l~ -p ( f~_B . rd l z )2 ) } ]  (156) 

By rotating the coordinate axis in R', taking the first orthonormal basis 
vector to r, one obtains 

~b = fl: [exp ( - - ( Ie r  

- -~ [exp  { - - ( ~ ,  

i = 2  

(157) 

where we have used the independence of the B,.. Hence we need only 
calculate the partition function for a single ray with the center-of-mass 
correction to the energy functional. If in addition ~-- itself had been a star 
and the connection point x had been the end of a ray, we could now com- 
pute the factor in the partition function with the center-of-mass correction 
in exactly the same way. For example, we shall take ~- to be a star 
polymer made by joining the endpoints of m identical single strands of 
length t and with uniform resistance measure (0c2/2)ds. The new star 
polymer is then formed by joining n of these at a connection point x which 
is the free end of one of the single-strand rays. Applying (157) to the star 
polymer Y,  we find 

= [sech(0c,)]( .... 1)'2 ( ~  '/2 
\ smn( ~t ) / 

(158) 

Application of Theorem 7 gives 

..--0] 
= [sech(~t)]u._ 1)/2 ( cosech(~t) ~1~ 

(m - l) tanh(~t) + coth(ctt)J 
(159) 

822~79d-2-20 
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for 2 ~< i ~< n. Hence (157) yields the partition function as 

cosech(0tt) '~ ~" - ~/2 
~b = [ sech(~t)] "<"- 1~:2 ( (m - I ) tanh(~t) + coth(0ct)/ 

x \sinh(cct)/ 
(160) 

11. D I S C U S S I O N  A N D  C O N C L U S I O N S  

In this paper we have demonstrated how we can compute the laws of 
quadratic functionals of Brownian motion using ideas from excursion 
theory. These techniques give us a systematic method for computing the 
partition functions for a wide variety of polymer types in elongational 
flows. The basic excursion rates needed in our calculations are known when 
we are dealing with piecewise constant resistances; more general resistance 
measures may require numerical computat ion of the basic rates involved. 
However, the piecewise constant measure does describe a wide variety of 
polymers, known as block copolymers, made by constructing polymers 
from monomers of different types. Moreover, more general resistances can 
also be approximated by piecewise constant resistances. 

The most obvious outstanding question in this work is whether a 
result analogous to Theorem 7 exists for a polymer whose time index is an 
arbitrary graph. We have seen that in the case of a ring polymer we can 
carry out some of the computations by considering Brownian motion on its 
time graph, i.e., some of the rates appearing have a natural interpretation 
in terms of Brownian motion on a circle. The main difference when we 
include loops is that, once a root is chosen, we lose the notion of directions 
on segments toward the root. 
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